Is there one thing else hidden within the middle of the Milky Method?

On this illustration, stars are seen as orbiting in shut orbit across the supermassive black gap that lies on the middle of the Milky Method, generally known as Sagittarius A* (Sgr A*). Credit score: Gemini Worldwide Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine), Acknowledgments: M. Zamani (NSF’s NOIRLab)[2]Correct insights into the supermassive black gap on the coronary heart of the Milky Method

Astronomers use the Gemini Observatory and a joint worldwide telescope to focus on Sagittarius A*

Obtained with the assistance of the Gemini North telescope, astronomers have made probably the most correct measurements to this point of the motion of stars across the supermass[{” attribute=””>black hole at the center of the Milky Way. These results show that 99.9% of the mass contained at the very center of the galaxy is due to the black hole, and only 0.1% could include stars, smaller black holes, interstellar dust, and gas, or dark matter.

https://www.youtube.com/watch؟v=EtQSjZ-HAnk

قاس علماء الفلك بدقة أكثر من أي وقت مضى موقع وسرعة النجوم الأربعة في المنطقة المجاورة مباشرة للقوس A * (Sgr A *) ،[1] The supermassive black gap that lurks on the middle of the Milky Method. The motions of those stars — named S2, S29, S38 and S55 — have been discovered to observe paths that present that the mass within the middle of the Milky Method is sort of completely because of the Sgr A* black gap, leaving little or no room for the rest.

The analysis crew used quite a lot of superior astronomical services on this analysis. To measure the celebrities’ velocities, they used spectroscopy from the Gemini Close to Infrared Spectrograph (GNIRS) in Gemini North close to Maunakea summit in Hawaii, a part of the Gemini Worldwide Observatory, the NSF NOIRLab program, and the SINFONI instrument on the European Southern Observatory.[{” attribute=””>تلسكوب كبير جدا. تم استخدام أداة GRAVITY في VLTI لقياس مواضع النجوم.

رسم توضيحي للثقب الأسود القوس A * في وسط مجرة ​​درب التبانة. الائتمان: مرصد الجوزاء الدولي / NOIRLab / NSF / AURA / J. دا سيلفا / (Spaceengine) ، شكر وتقدير: M. Zamani (NSF’s NOIRLab)

قال راينهارد جينزل ، مدير معهد ماكس بلانك للفيزياء خارج كوكب الأرض والمشترك في الحصول على جائزة نوبل في الفيزياء لعام 2020: “نحن ممتنون جدًا لمرصد الجوزاء ، الذي أعطتنا أداة GNIRS الخاصة به المعلومات الهامة التي نحتاجها”. “يُظهر هذا البحث التعاون العالمي في أفضل حالاته.”

يحتوي مركز المجرة التابع لمجرة درب التبانة ، الذي يقع على بعد حوالي 27000 سنة ضوئية من الشمس ، على مصدر الراديو المضغوط Sgr A * الذي حدده علماء الفلك على أنه ثقب أسود فائق الكتلة يبلغ 4.3 مليون مرة كتلة الشمس. على الرغم من عقود من الملاحظات المضنية – وتم منح جائزة نوبل لاكتشاف هوية Sgr A *[3] It has been tough to show definitively that almost all of this mass belongs solely to the supermassive black gap and likewise doesn’t embody an infinite quantity of matter corresponding to stars, smaller black holes, interstellar mud and fuel, or darkish matter.

VLTI images from ESO of stars in the center of the Milky Way

These annotated photographs, acquired with the GRAVITY instrument on ESO’s Very Giant Telescope Interferometer (VLTI) between March and July 2021, present stars orbiting close to Sagittarius A*, the supermassive black gap on the coronary heart of the Milky Method. One among these stars, known as S29, was noticed because it approached the black gap at its closest at a distance of 13 billion km, 90 instances the space between the Solar and Earth. One other star, known as S300, was first found in new VLTI observations reported by ESO.
Utilizing Gemini North of the Gemini Worldwide Observatory, a program from NSF’s NOIRLab and ESO’s VLT, astronomers have measured extra precisely than ever the place and velocity of those stars S29 and S55 (in addition to the celebrities S2 and S38), and located them shifting in a means that exhibits that the mass in The middle of the Milky Method is sort of completely because of the black gap Sagittarius A*, leaving little or no room for the rest. Credit score: ESO/GRAVITY Collaboration

“With the 2020 Nobel Prize in Physics awarded to verify that Sgr A* is certainly a black gap, we now need to transfer ahead. We want to perceive if there may be the rest hidden within the middle of the Milky Method, and whether or not common relativity is certainly the right idea of gravity on this excessive laboratory, defined Stefan Gelsen, one of many astronomers concerned on this work. “Essentially the most direct method to reply this query is to carefully observe the orbits of stars passing close to Sgr A*.”

Einstein’s common idea of relativity predicts that the orbits of stars round a compact, supermassive object are barely totally different from these predicted by classical Newtonian physics. Particularly, common relativity predicts that the orbits of the celebrities will paint a sublime rosette – an impact generally known as preemptive Schwarzschild. To really see the celebrities monitoring this rose, the crew tracked the place and velocity of 4 stars within the instant neighborhood of Sgr A* – known as S2, S29, S38 and S55. The crew’s observations of how far these stars have gone allowed to deduce the mass distribution inside Sgr A*. They found that any mass extending inside the orbit of S2 contributes at most 0.1% of the mass of the supermassive black gap.

https://www.youtube.com/watch?v=7WBZglhV-Tk
animated sequence for[{” attribute=””>ESO’s Very Large Telescope Interferometer (VLTI) images of stars around the Milky Way’s central black hole. This animation shows the orbits of the stars S29 and S55 as they move close to Sagittarius A* (center), the supermassive black hole at the heart of the Milky Way. As we follow the stars along in their orbits, we see real images of the region obtained with the GRAVITY instrument on the VLTI in March, May, June and July 2021. In addition to S29 and S55, the images also show two fainter stars, S62 and S300. S300 was detected for the first time in new VLTI observations reported by ESO.

Measuring the minute variations in the orbits of distant stars around our galaxy’s supermassive black hole is incredibly challenging. To make further discoveries, astronomers will have to push the boundaries not only of science but also of engineering. Upcoming extremely large telescopes (ELTs) such as the Giant Magellan Telescope and the Thirty Meter Telescope (both part of the US-ELT Program) will allow astronomers to measure even fainter stars with even greater precision.

“We will improve our sensitivity even further in future, allowing us to track even fainter objects,” concluded Gillessen. “We hope to detect more than we see now, giving us a unique and unambiguous way to measure the rotation of the black hole.”

https://www.youtube.com/watch؟v=K2SUQmGwX40
التكبير في قلب مجرة ​​درب التبانة لرؤية النجوم كما لوحظ من قبل التلسكوب الكبير جدًا التابع للمرصد الأوروبي الجنوبي (آخر ملاحظة كانت من عام 2019). إن التكبير بشكل أكبر يكشف عن نجوم أقرب إلى الثقب الأسود ، لوحظ باستخدام أداة GRAVITY على مقياس التداخل التلسكوب الكبير جدًا التابع لـ ESO في منتصف عام 2021.

قال مارتن ستيل ، مسؤول برنامج الجوزاء في مؤسسة العلوم الوطنية: “تواصل مراصد الجوزاء تقديم رؤية جديدة لطبيعة مجرتنا والثقب الأسود الهائل في مركزها”. “مزيد من تطوير الأدوات خلال العقد المقبل والمخصص للاستخدام على نطاق واسع سيحافظ على ريادة NOIRLab في توصيف الكون من حولنا.”

لمزيد من المعلومات حول هذا البحث ، انظر شاهد النجوم يتسابقون حول الثقب الأسود الهائل في مجرة ​​درب التبانة.

ملحوظات

  1. يُنطق القوس A * باسم “برج القوس نجم”.
  2. يتكون VLT الخاص بـ ESO من أربعة تلسكوبات فردية ذات موقع واحد يبلغ قطرها 8.2 متر والتي يمكن أن تجمع الضوء من خلال شبكة من المرايا والأنفاق تحت الأرض باستخدام تقنية تعرف باسم قياس التداخل ، لتشكيل VLTI. يستخدم GRAVITY هذه التقنية لقياس موضع أجسام السماء ليلاً بارتفاع[{” attribute=””>accuracy — equivalent to picking out a quarter-dollar coin on the surface of the Moon.
  3. The 2020 Nobel Prize in Physics was awarded in part to Reinhard Genzel and Andrea Ghez “for the discovery of a supermassive compact object at the center of our galaxy.”

This research is presented in the paper “The mass distribution in the Galactic Centre from interferometric astrometry of multiple stellar orbits” which is published in Astronomy & Astrophysics. A companion paper “Deep Images of the Galactic Center with GRAVITY” has also been published in Astronomy & Astrophysics.

References:

“Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits” by GRAVITY Collaboration: R. Abuter, N. Aimar, A. Amorim, J. Ball, M. Bauböck, J. P. Berger, H. Bonnet, G. Bourdarot, W. Brandner, V. Cardoso, Y. Clénet, Y. Dallilar, R. Davies, P. T. de Zeeuw, J. Dexter, A. Drescher, F. Eisenhauer, N. M. Förster Schreiber, A. Foschi, P. Garcia, F. Gao, E. Gendron, R. Genzel, S. Gillessen, M. Habibi, X. Haubois, G. Heißel,??, T. Henning, S. Hippler, M. Horrobin, L. Jochum, L. Jocou, A. Kaufer, P. Kervella, S. Lacour, V. Lapeyrère, J.-B. Le Bouquin, P. Léna, D. Lutz, T. Ott, T. Paumard, K. Perraut, G. Perrin, O. Pfuhl, S. Rabien, J. Shangguan, T. Shimizu, S. Scheithauer, J. Stadler, A.W. Stephens, O. Straub, C. Straubmeier, E. Sturm, L. J. Tacconi, K. R. W. Tristram, F. Vincent, S. von Fellenberg, F. Widmann, E. Wieprecht, E. Wiezorrek, J. Woillez, S. Yazici and A. Young, 19 January 2022, Astronomy & Astrophysics.
DOI: 10.1051/0004-6361/202142465

“Deep images of the Galactic center with GRAVITY” by GRAVITY Collaboration: R. Abuter, N. Aimar, A. Amorim, P. Arras, M. Bauböck, J. P. Berger, H. Bonnet, W. Brandner, G. Bourdarot, V. Cardoso, Y. Clénet, R. Davies, P. T. de Zeeuw, J. Dexter, Y. Dallilar, A. Drescher, F. Eisenhauer, T. Enßlin, N. M. Förster Schreiber, P. Garcia, F. Gao, E. Gendron, R. Genzel, S. Gillessen, M. Habibi, X. Haubois, G. Heißel, T. Henning, S. Hippler, M. Horrobin, A. Jiménez-Rosales, L. Jochum, L. Jocou, A. Kaufer, P. Kervella, S. Lacour, V. Lapeyrère, J.-B. Le Bouquin, P. Léna, D. Lutz, F. Mang, M. Nowak, T. Ott, T. Paumard, K. Perraut, G. Perrin, O. Pfuhl, S. Rabien, J. Shangguan, T. Shimizu, S. Scheithauer, J. Stadler, O. Straub, C. Straubmeier, E. Sturm, L. J. Tacconi, K. R. W. Tristram, F. Vincent, S. von Fellenberg, I. Waisberg, F. Widmann, E. Wieprecht, E. Wiezorrek, J. Woillez, S. Yazici, A. Young and G. Zins, 19 January 2022, Astronomy & Astrophysics.
DOI: 10.1051/0004-6361/202142459

More information

The team behind this result is composed of The GRAVITY Collaboration, R. Abuter (European Southern Observatory), A. Amorim (Universidade de Lisboa and CENTRA – Centro de Astrofísica e Gravitação), M. Bauböck (Max Planck Institute for Extraterrestrial Physics and University of Illinois), J. P. Berger (University Grenoble Alpes and European Southern Observatory), H. Bonnet (European Southern Observatory), G. Bourdarot (University Grenoble Alpes and Max Planck Institute for Extraterrestrial Physics), V. Cardoso (CENTRA – Centro de Astrofísica e Gravitação and CERN), Y. Clénet (LESIA, Observatoire de Paris), Y. Dallilar (Max Planck Institute for Extraterrestrial Physics), R. Davies (Max Planck Institute for Extraterrestrial Physics), P. T. de Zeeuw (Leiden University and Max Planck Institute for Extraterrestrial Physics), J. Dexter (University of Colorado, Boulder), A. Drescher (Max Planck Institute for Extraterrestrial Physics), A. Eckart (University of Cologne and Max Planck Institute for Radio Astronomy), F. Eisenhauer (Max Planck Institute for Extraterrestrial Physics), N. M. Förster Schreiber (Max Planck Institute for Extraterrestrial Physics), P. Garcia (Universidade do Porto and CENTRA – Centro de Astrofísica e Gravitação), F. Gao (Universität Hamburg and Max Planck Institute for Extraterrestrial Physics), E. Gendron (LESIA, Observatoire de Paris), R. Genzel (Max Planck Institute for Extraterrestrial Physics and University of California, Berkeley), S. Gillessen (Max Planck Institute for Extraterrestrial Physics), M. Habibi (Max Planck Institute for Extraterrestrial Physics), X. Haubois (European Southern Observatory), G. Heißel (LESIA, Observatoire de Paris), T. Henning (Max Planck Institute for Astronomy), S. Hippler (Max Planck Institute for Astronomy), M. Horrobin (University of Cologne), L. Jochum (European Southern Observatory), L. Jocou (University Grenoble Alpes), A. Kaufer (European Southern Observatory), P. Kervella (LESIA, Observatoire de Paris), S. Lacour (LESIA, Observatoire de Paris), V. Lapeyrère (LESIA, Observatoire de Paris), J.-B. Le Bouquin (University Grenoble Alpes), P. Léna (LESIA, Observatoire de Paris), D. Lutz (Max Planck Institute for Extraterrestrial Physics), T. Ott (Max Planck Institute for Extraterrestrial Physics), T. Paumard (LESIA, Observatoire de Paris), K. Perraut (University Grenoble Alpes), G. Perrin (LESIA, Observatoire de Paris), O. Pfuhl (European Southern Observatory and Max Planck Institute for Extraterrestrial Physics), S. Rabien (Max Planck Institute for Extraterrestrial Physics), G. Rodríguez-Coira (LESIA, Observatoire de Paris), J. Shangguan (Max Planck Institute for Extraterrestrial Physics), T. Shimizu (Max Planck Institute for Extraterrestrial Physics), S. Scheithauer (Max Planck Institute for Astronomy), J. Stadler (Max Planck Institute for Extraterrestrial Physics), O. Straub (Max Planck Institute for Extraterrestrial Physics), C. Straubmeier (University of Cologne), E. Sturm (Max Planck Institute for Extraterrestrial Physics), L. J. Tacconi (Max Planck Institute for Extraterrestrial Physics), K. R. W. Tristram (European Southern Observatory), F. Vincent (LESIA, Observatoire de Paris), S. von Fellenberg (Max Planck Institute for Extraterrestrial Physics), F. Widmann (Max Planck Institute for Extraterrestrial Physics), E. Wieprecht (Max Planck Institute for Extraterrestrial Physics), E. Wiezorrek (Max Planck Institute for Extraterrestrial Physics), J. Woillez (European Southern Observatory), S. Yazici (Max Planck Institute for Extraterrestrial Physics and the University of Cologne), and A. Young (Max Planck Institute for Extraterrestrial Physics).

Leave a Comment

A note to our visitors

This website has updated its privacy policy in compliance with changes to European Union data protection law, for all members globally. We’ve also updated our Privacy Policy to give you more information about your rights and responsibilities with respect to your privacy and personal information. Please read this to review the updates about which cookies we use and what information we collect on our site. By continuing to use this site, you are agreeing to our updated privacy policy.